Predicting Nitric Oxide Emissions from Cover Crop Management in Brazilian Cerrado with DNDC model

Antonio Carlos Reis de Freitas¹
Arminda Moreira de Carvalho¹
Mercedez Maria da Cunha Bustamante²

- 1. Brazilian Agricultural Research Corporation, Embrapa, Brazil
- 2. University of Brasilia, Brazil

September 14-17, 2013, Beijing, China

Presentation outline

- > Introduction
- Site description
- > Field measurements and simulations
- Results
- Conclusion

Introduction

Brazil has one of most important crop producers of world:

- ➤ 48,8 millions hectares of area cultivated;
- Production: 187 millions of grain.

(IBGE, 2013)

Machinery harvesters before harvest soybean farm in Tangara da Serra, in Cuiabá (Andre Penner / AP)

Introduction (cont.)

- NO emissions remain poorly characterized for many practices and many regions of world, including Brazil;
- Mathematical models can help fill these data gaps but most models have not been widely validated in several ecosystems and agricultural systems;
- ➤ Li, C. (2000) is a validation study comparing NO emissions from DNDC predictions against experimental measurement.

Li, C., 2000. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems 58, 259–276.

Introduction (cont.)

- ➤ **But,** there is few studies about NO emissions from cover crop management system.
- ➤ Objective in this research is to assess the ability of DNDC model for predicting NO emissions from cover crop management in the Brazilian Cerrado.

Site description

- Experiment at Embrapa Cerrado: Mar-2002 To Jun- 2003
- Experimental design: randomized block design, with three replications and split plot.
- > Soils: clay
- > Soil Organic Carbon (SOC): 23.6 g .kg⁻¹
- Bulk density (BD): 0.85 g cm⁻³
- > pH 6.2 (CaCl2)
- ➤ Mean annual rainfall: 797 mm
- ➤ Mean Air temperature: 23°C

Field measurements and simulations

Observed data:

➤ NO flux was measured with use of dynamic chamber technical combined with chemiluminescence analyzer and data logger.

Predicted data:

➤ Observed flux data, local climate, soil and management information were utilized to test DNDC95 version its applicability for cover crop management in Conventional and No-Tillage System for:

- Crotalaria juncea;
- Mucuna pruriense;
- Natural fallow.

Results

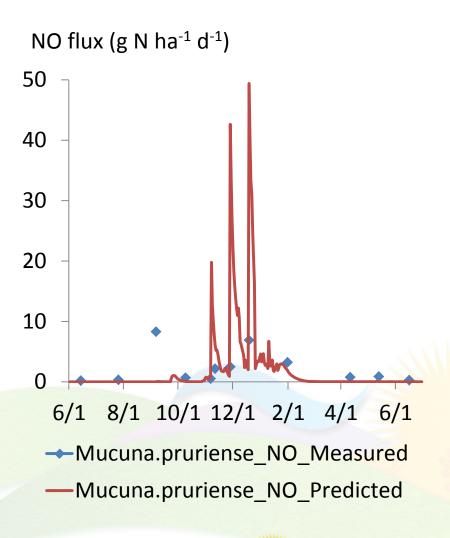
For cover crop in Conventional Systems:

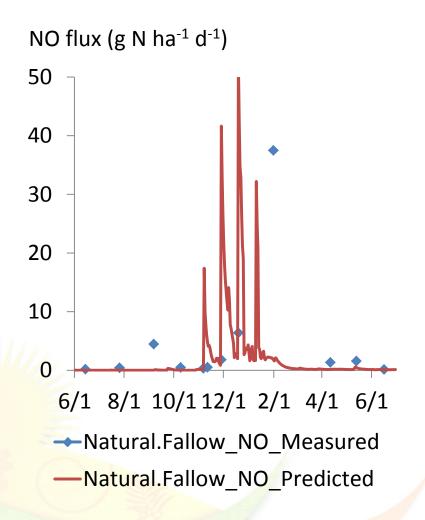
 \triangleright Predicted emissions were very similar to the collected data with mean, 0.8 kg NO-N. ha⁻¹ yr⁻¹, T test = 0,69

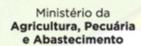
For cover crop in No-tillage Systems:

➤ Predicted emissions were mean, 0.7 kg NO-N ha⁻¹ yr⁻¹, lower than collected data for Mucuna pruriense (mean, 1.3 kg NO-N ha⁻¹ yr⁻¹)

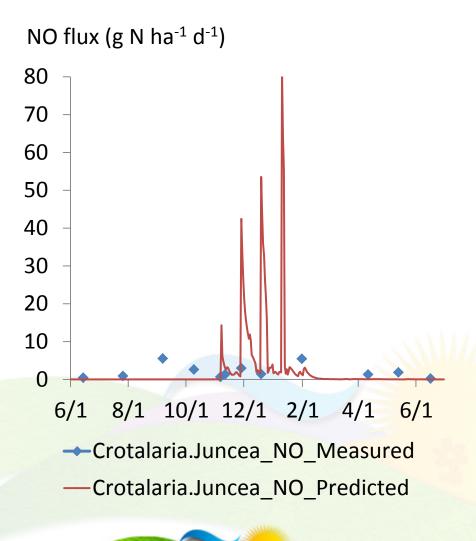
➤ Predicted emissions from Crotalaria juncea and Mucuna pruriense both were higher than emissions from natural fallow (mean, 0.59 kg NO-N .ha⁻¹ yr⁻¹)

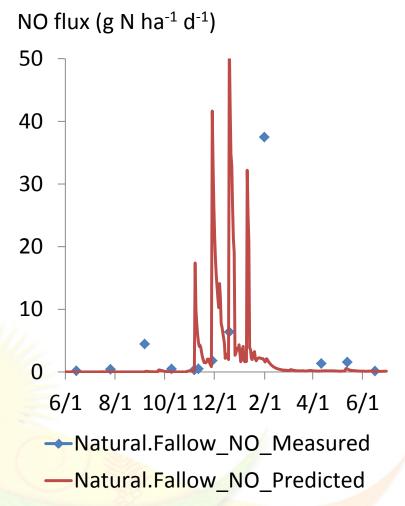


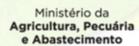




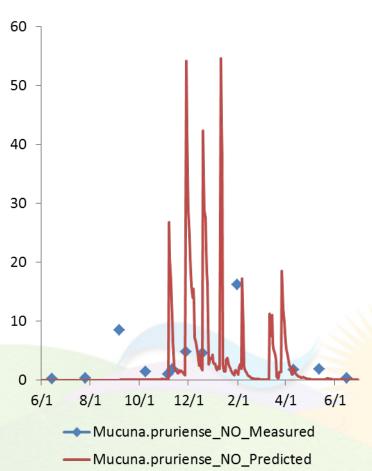
Measured and predicted NO fluxes from *Mucuna pruriens* and Natural fallow in conventional management

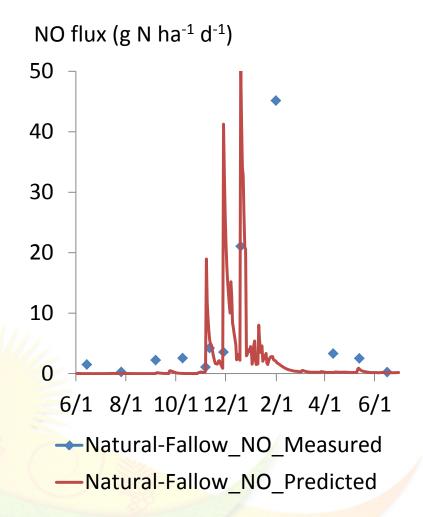






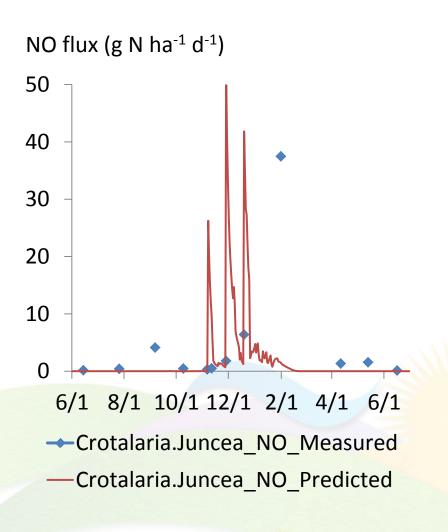
Measured and predicted NO fluxes from *Crotalaria Juncea* and Natural fallow in conventional management

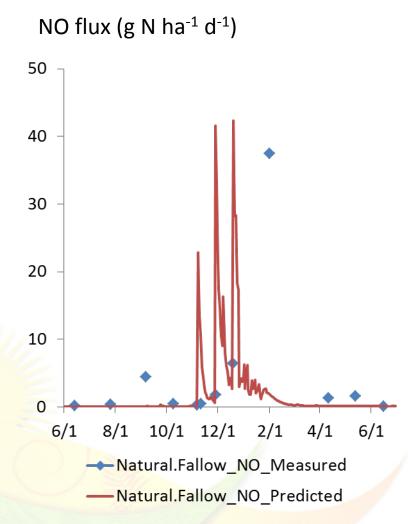




Measured and predicted NO fluxes from *Mucuna pruriens* and Natural fallow in No-Tillage management

NO flux (g N ha⁻¹ d⁻¹)







Measured and predicted NO fluxes from *Crotalaria juncea* and Natural fallow in No-Tillage management

Conclusion

Results reveal that the DNDC model yet requires calibration for application in no-tillage systems cultivated in Brazilian *Cerrado*.

Thank You!!!

Embrapa

carlos.freitas@embrapa.br

