Life Cycle Assessment for greenhouse gas footprinting: clover-fixed-N vs. fertiliser-N

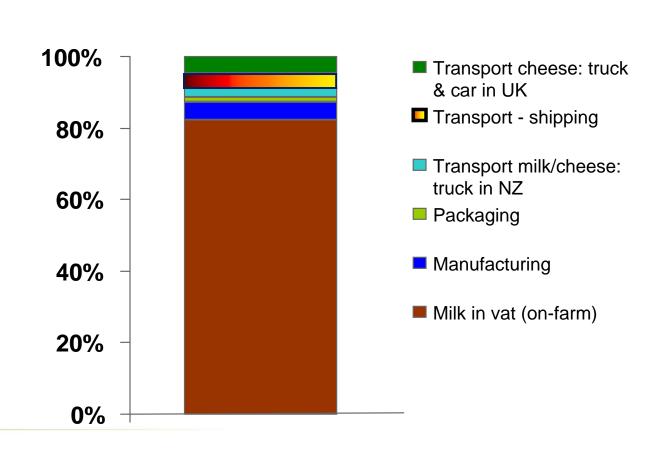
Stewart Ledgard, Jiafa Luo & Mark Boyes

AgResearch, Hamilton, NZ

Outline of talk

- 1. What is Life Cycle Assessment (LCA)?
- 2. Importance of including whole life cycle
- 3. Clover fixed N versus fertiliser N
 - energy use
 - nitrogen leaching
 - nitrous oxide
 - **♣** LCA & GHGs farmlet study

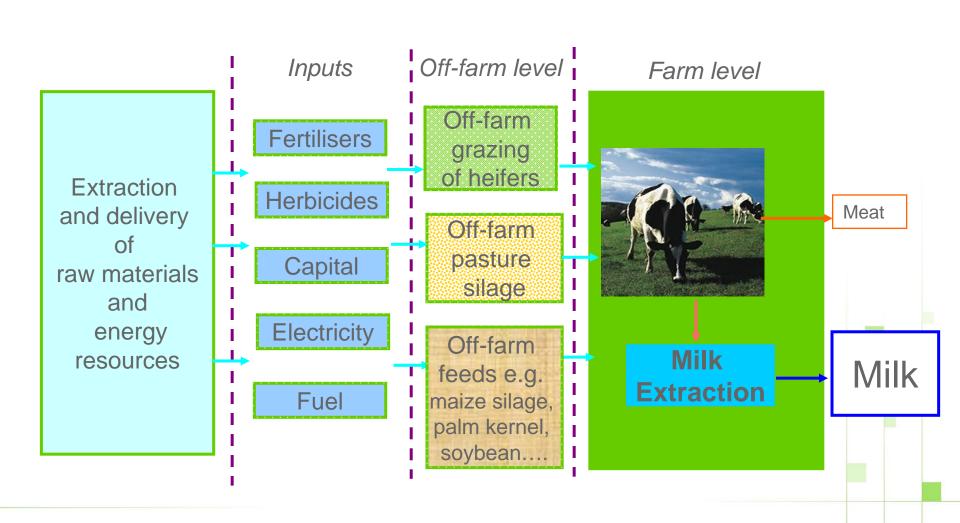
Total resource use or environmental emissions (e.g. GHG) of a product or system from "cradle-to-grave"


(uses ISO 14040s norms; PAS 2050)

Contributors to the NZ dairy GHG footprint

Preliminary "Cradle-to-plate" life cycle of NZ cheese to the UK: GHG emissions

Ledgard et al. (2005)



Life Cycle Assessment (LCA) methodology

agresearch

("cradle-to-farm-gate" stage)

2. Importance of including whole life cycle

DairyNZ RED trial:

Control

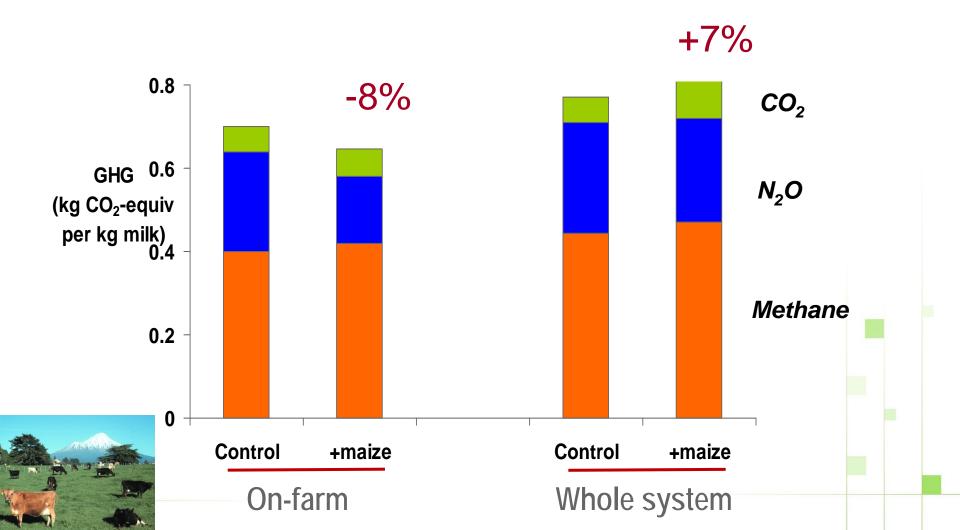
3.0 cows/ha

1150 kg milksolids/ha

+maize (+5 t DM/ha)

3.8 cows/ha

1490 kg milksolids/ha


Effect of maize silage use on GHG emissions from dairy farm systems (to farm-gate stage)

Effect of maize silage use on GHG emissions from dairy farm systems (to farm-gate stage)

3. Clover versus N fertiliser

- i. Energy requirements & GHG
- ii. N leaching risk
- iii. N₂O emissions
- iv. LCA farmlet study

i. Energy requirements & GHG

Clover:

- energy from photosynthesis used to fix atmospheric N₂
 (~ 6 g C / g N fixed)
- "greenhouse gas neutral" N source

Fertiliser N:

- ammonia production has high energy requirement (~ 60 MJ / kg N)
- total GHG emissions (production, cartage and use) ~ 3.5-4.0 kg CO₂-equiv/kg N

ii. Measured N leaching from clover/grass versus N-fertilised grass pastures

White clover/ Ryegrass ryegrass +150-200N

Sheep (Cuttle et al. 1992; Wales) 15 11

Dairy cows (Sprosen et al. 1997; NZ) 25 27

Dairy cows (Shils et al. 2000; Netherlands) 22 20

iii. Nitrous oxide emissions from clover/grass versus N-fertilised grass pastures

- At the same excreta N inputs, N₂O emissions are expected to be similar for clover or N-fertilised pastures
- Direct N₂O emissions:

	IPCC (2006)	Corre & Kasper (2002)
clover-N	= nil	~ 0.2 % ¹
fertiliser-N	= 1%	~ 1.3%1

IDOO (OOO)

¹high uncertainty

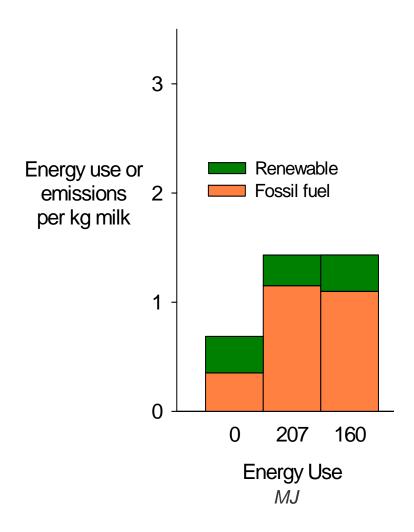
• Therefore, total N₂O emissions are higher from N-fertilised grass systems than clover-based systems

iv. LCA: Farmlets of 0 and 207 kg fertiliser-N/ha/yr

Data is an average of 5 years measurements

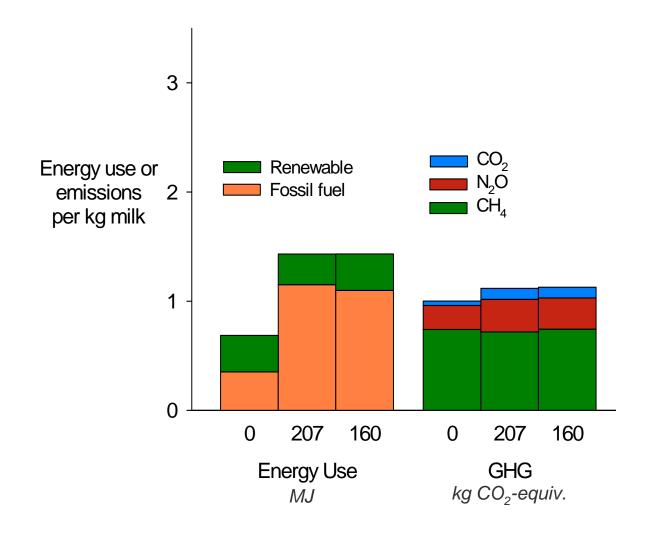
	ON	207N
Cows ha ⁻¹	3.3	3.3
Milk production (kg/ha/yr)	13210	15460
Fertiliser N (kg N/ha/yr)	0	207
N ₂ fixation (kg N/ha/yr)	160	100
N leaching (kg N/ha/yr)	30	63

iv. LCA: Farmlets of 0 and 207 kg fertiliser-N/ha/yr and a hypothetical grass-only N system

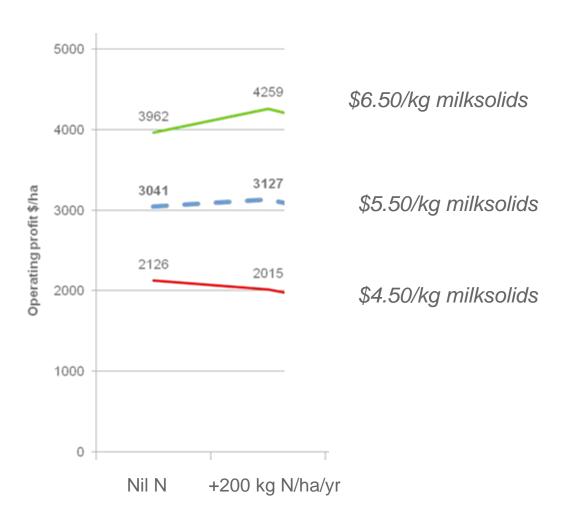

Data is an average of 5 years measurements

	ON	207N	160N grass- only
Cows ha ⁻¹	3.3	3.3	3.31
Milk production (kg/ha/yr)	13210	15460	13210 ¹
Fertiliser N (kg N/ha/yr)	0	207	160
N ₂ fixation (kg N/ha/yr)	160	100	0
N leaching (kg N/ha/yr)	30	63	30 ¹

¹assumed to be the same as for the 0 N farmlet


iv. LCA: Farmlets of 0 and 207 kg fertiliser-N/ha/yr, and a hypothetical grass-only N system

iv. LCA: Farmlets of 0 and 207 kg fertiliser-N/ha/yr, and a hypothetical grass-only N system


Summary

- Life Cycle Assessment (LCA) includes all contributors to GHG emissions
- LCA should be used to fully evaluate a system or mitigation technology to account for total GHG emissions
- Clover fixed N versus fertiliser N
 - Energy use: clover much more efficient (especially for fossil fuel use)
 - GHG: clover was 12-15% more efficient

Operating Profit \$ per ha: Red Trial 2002-2006 Assumptions: N applied \$1.60/kgN

