Framework for up-scaling nitrous oxide emissions from New Zealand hill country

Cecile de Klein*A Coby Hoogendoorn^B Surinder Saggar^C **Andrew Manderson**^B Donna Giltrap^C **Craig Briggs**^D Jacqueline Rowarth^E

Objectives

- Develop a framework for up-scaling N₂O emissions from New Zealand hill country
- Identify hill land units that contribute most to the total N₂O emissions

^A AgResearch Invermay, Private Bag 50034, Mosgiel, New Zealand; ^BAgResearch Grasslands, Private Bag 11008, Palmerston North 4442, New Zealand; ^C Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand; ^D Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand; Elnstitute of Natural Resources, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand *Cecile.deklein@agresearch.co.nz

Background

- ◆ Urine from grazed animals is the largest source of N₂O in New Zealand
- Hill land comprises 60% of total farmed area in NZ
- ◆ Large topography-driven spatial variability, both in N excreta rates and N₂O emissions

Approach

N_2O Hill country = Σ_i (HLU_i • Nreturn_i • EF_{3i})

 HLU_i = Area of land in Hill Land Unit i, as defined by slope, aspect, and drainage class; i = 1, ... 18 (ha) $Nreturn_i = amount of excreta N deposited in HLU i (kg N excreted/ha)$ $EF_{3i} = N_2O$ emission factor for N deposited in HLU *i* (kg N_2O -N/kg N excreted)

1. Defining HLU (Figure 1)

- Hill country definition from NZLRI¹ intersected by i) sheep/beef farms, ii) land with pasture cover, and iii) land below the tree-line.
- 18 hill land units defined based on 3 soil drainage classes x 3 slopes x 2 aspects.

2. Estimating Nreturn

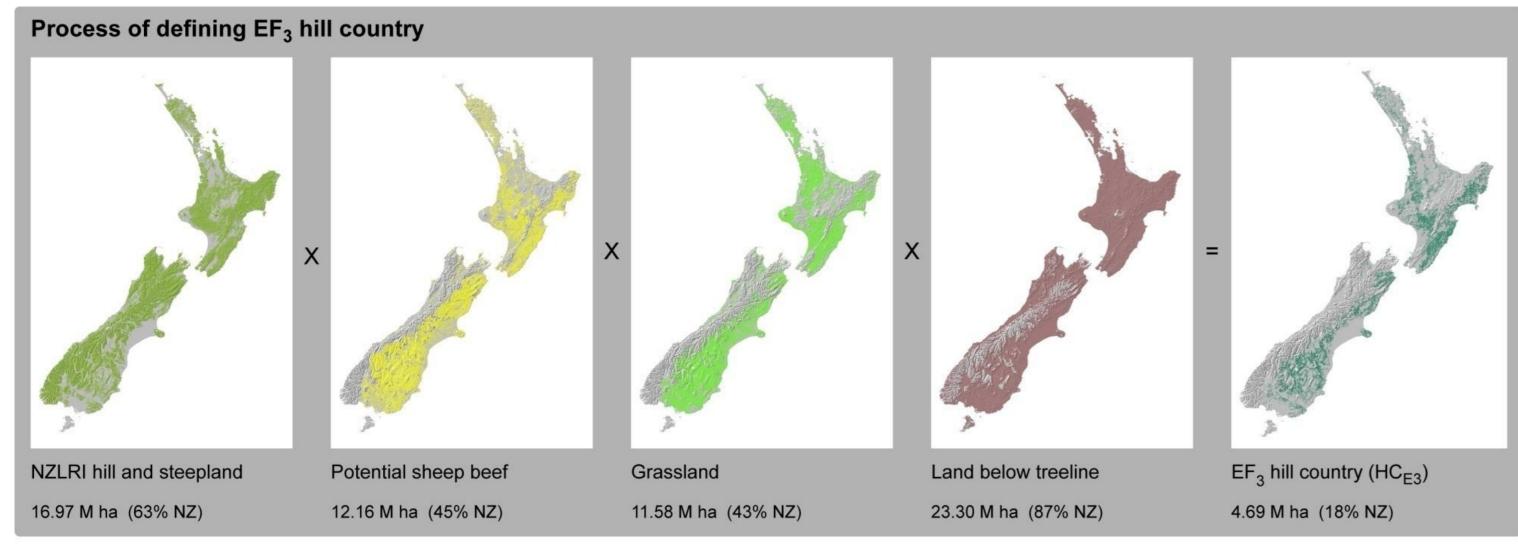
- Total number of stock from the 2007 Agricultural Production Survey (Statistics New Zealand) and Agribase TM .
- N excretion rates from total stock numbers and N excreted per animal as in NZ inventory method 2. - A nutrient transfer model (NTM)³ to calculate the proportional distribution of excretal N for each HLU.

3. Assigning EF_{3i} values

- Each HLU was assigned a potential EF₃ category: very high, high, moderate, low and very low.
- Six scenarios run to assess relative impact of emission factor values (Table 1) and to identify key HLUs.

Table 1: Assigned emission factor scenarios (EF₃; %)

EF ₃ category	HLUs*	l#	II	Ш	IV	V	VI
Very high	PNL, PSL	1.00	2.00	1.50	1.00	0.50	2.50
High	MNL, PNM	1.00	1.50	1.00	0.75	0.25	1.00
Moderate	FNL, MNM, MSL, PSM	1.00	1.00	0.60	0.50	0.10	0.20
Low	FNM, FSL, MSM, PNH, PSH	1.00	0.50	0.30	0.25	0.05	0.05
Very Low	FNH, FSM, FSH, MNH, MSH	1.00	0.05	0.05	0.05	0.01	0.001


*HLU code: **XYZ** = drainage, aspect, slope; Drainage = F, M, P (free, moderately well drained, poorly); Aspect = N, S (NW and SE); Slope = L, M, H (low <12°, medium 12-25°, high >25°)

*Scenario I = EF₃ set at 1 % for all HLUs Scenario II = EF_3 relatively high for all HLUs Scenario III = EF₃ moderately high for all HLUs

Scenario IV = EF_3 moderate for all HLUs Scenario $V = EF_3$ low for all HLUs Scenario $VI = EF_3$ ranges very high to very low

Results

agresearch

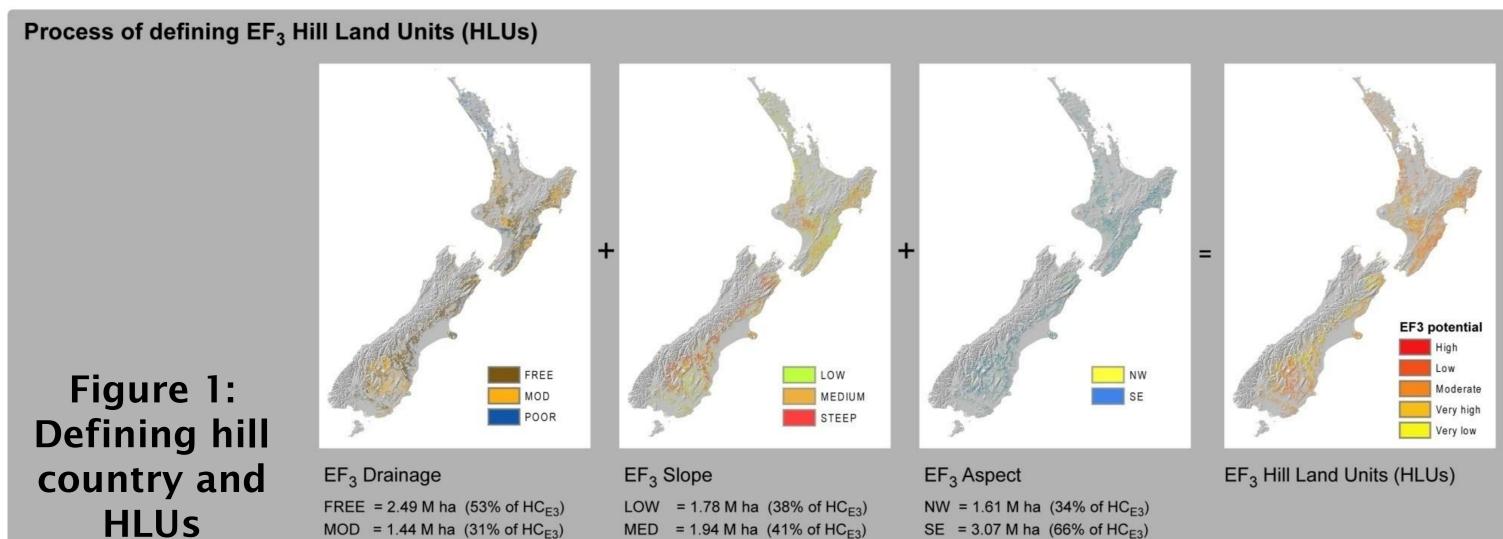


Table 2: Relative contributions of land area, N return and N₂O emissions per drainage class, aspect and slope category

		Area	N return	N ₂ O emissions scenarios (%)						
		(%)	(%)	- 1	Ш	Ш	IV	V	VI	Range
Drainage	Free	53	53	53	26	32	32	22	5	5–53
	Moderate	31	31	31	36	31	35	30	20	20–36
	Poor	16	16	16	38	37	33	48	75	16–75
Aspect	NW	34	34	34	47	41	45	46	50	34–50
	SE	66	66	66	53	59	55	54	50	50–66
Slope	Low	38	57	57	84	78	77	82	91	57–91
	Medium	41	31	31	14	19	21	16	8	8–31
	High	21	12	12	2	3	3	2	1	1–12

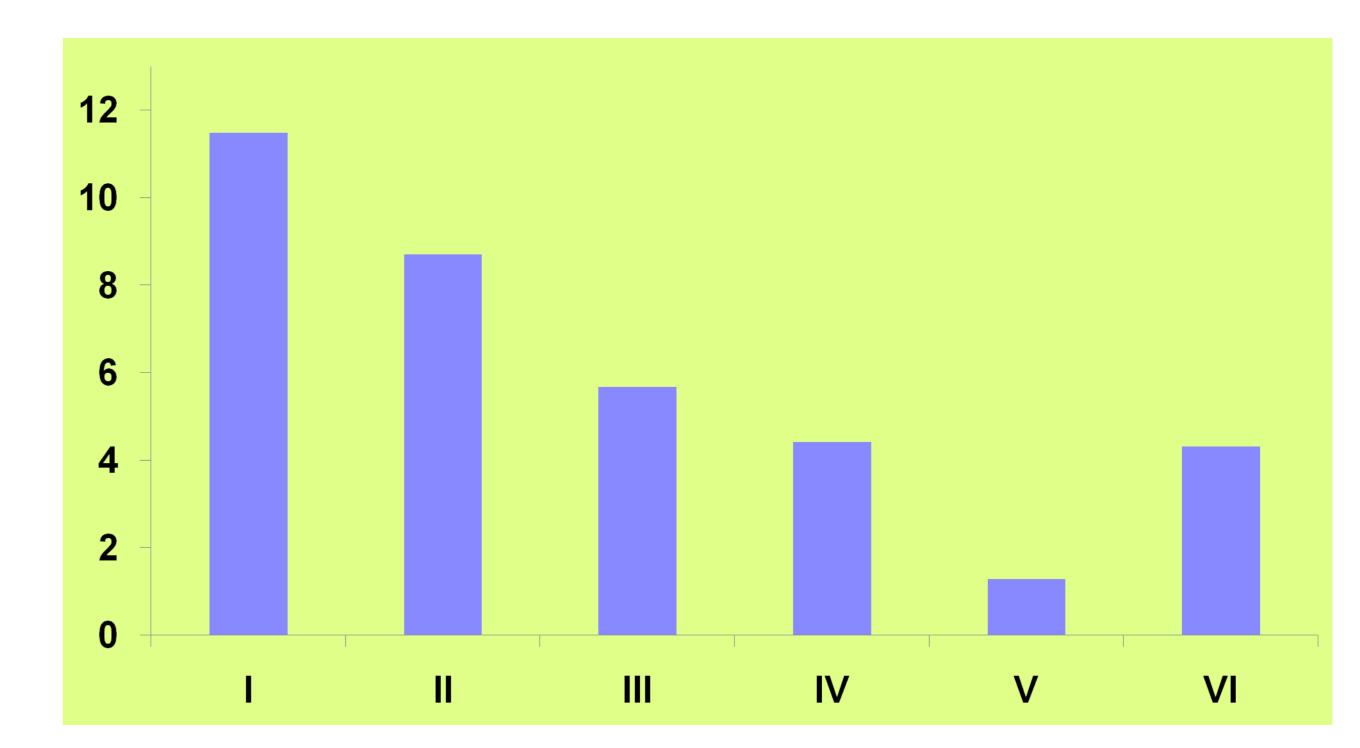


Figure 2: Estimated total N₂O emission (Gg N₂O) from New Zealand hill country for the six scenarios

Conclusions

- The proposed framework can successfully account for topography-driven spatial variability
- For all scenarios, total N₂O emissions were lower than current estimate
- Low slopes receive majority of N and can contribute up to 90% of the total emissions
- Poorly draining soils receive only 16% of N but can emit up to 75% of total emissions
- Low and medium slopes on free draining soils receive almost 50% of N and refinement of EF₃ for these HLUs is critical

Acknowledgement

This study was funded by the New Zealand Ministry of Agriculture & Forestry

References

Nov 2009.

¹ NZLRI: New Zealand Land Resource Inventory

²Clark H, Brookes I, Walcroft A. 2003. Enteric methane emissions from New Zealand ruminants 1990-2001 calculated using an IPCC Tier 2 approach. Report prepared for the Ministry of Agriculture and Forestry (March 2003). ³ Saggar S, Rowarth J, Hoogendoorn C, de Klein C (2009) Application of a nutrient transfer model for upscaling nitrous oxide emissions from grazed hill country pastures. Poster at MC2 conference, Palmerston North, New Zealand, 18-20

Farming, Food and Health. First